The blog of dlaa.me

No trees were harmed in the making of this blog post [How to: Successfully print a Chart with the Silverlight 4 Beta]

One of the big requests people have had for Silverlight was the ability to print, so one thing that's new in the Silverlight 4 Beta is the PrintDocument class which enables applications to print anything they want! There isn't an excess of fancy bells and whistles quite yet, but the support Silverlight provides is enough to do just about everything - it's just that sometimes you might need to do a little more than you expect. :) It's the classic "crawl, walk, run" approach to feature delivery, and this is a great first step that will be a welcome addition for everyone who's been wanting to print with Silverlight.

Okay, so that's all well and good and people can print any content they want and it all looks beautiful and works perfectly, right? Pretty much, yes! Well, except for certain scenarios involving charts from the Silverlight/WPF Data Visualization assembly. :( To be clear, if you try to print a Chart that's already in the visual tree, it works just fine and what you see really is what you get. But if you've tried to create custom content specifically for printing (for example: a different layout, maybe some page headers and footers, etc.) and that content included a Chart instance, you probably noticed a minor issue: none of the data points showed up on the page. Darn, it sure is hard to tell what's going on without those data points...

 

Fortunately, a bit of mental debugging reveals what's going on here. Charting's data points fade in by default - from Opacity 0 to 1 over the course of 0.5 seconds via a Visual State Manager transition. That's cool and it works great in the visual tree - however, when you're creating print-specific visuals and immediately printing them, those data points don't have a chance to do much fading in... So they're actually all there on the printed page, but they're at Opacity 0, so you can't see them!

What to do? Well, the most convenient thing would be for the Chart code to somehow know it was going to be printed and SkipToFill those pesky animations. But there's no official way for a control to know it's being created for printing. There are a few tricks the Chart could use to make an educated guess, but it doesn't do so yet - and I'm not sure that's the right answer anyway. So the next most obvious thing would be to re-Template the DataPoints to replace the default fading Template with one that doesn't fade, but instead starts fully visible. And as you'd expect, this works just fine - the data points show up and look great!

However, that's a lot of work that you probably don't want to have to do. It would be nice if there were a middle ground - some technique that was maybe a little bit of a hack, but that was really easy to implement and worked just about all the time...

 

And the good news is that there is such a hack! The idea builds upon the observation that printing a Chart from the visual tree works correctly - so let's start by popping our new, print-ready chart into the visual tree to give it a chance to get all pretty, then print it once that's done. That seems easy enough, let's try it:

// Create customized content for printing
var chart = new Chart { Title = "My Printed Chart" };
var series = new LineSeries
{
    ItemsSource = (PointCollection)Resources["Items"],
    DependentValuePath = "Y",
    IndependentValuePath = "X",
};
chart.Series.Add(series);
var content = new Border
{
    BorderBrush = new SolidColorBrush(Colors.Magenta),
    BorderThickness = new Thickness(10),
    Child = chart,
};

// Create container for putting content in the visual tree invisibly
var visualTreeContainer = new Grid
{
    Width = 1000,
    Height = 1000,
    Opacity = 0,
};

// Put content in the visual tree to initialize
visualTreeContainer.Children.Add(content);
LayoutRoot.Children.Add(visualTreeContainer);

// Prepare to print
var printDocument = new PrintDocument();
printDocument.PrintPage += delegate(object obj, PrintPageEventArgs args)
{
    // Unparent the content for adding to PageVisual
    visualTreeContainer.Children.Remove(content);
    args.PageVisual = content;
};

// Print the content
printDocument.Print();

// Remove container from the visual tree
LayoutRoot.Children.Remove(visualTreeContainer);

Note that the sample application is creating a completely new Chart instance here (with a print-specific title and custom magenta frame) - and that the printed output looks just like it should:

ChartPrinting sample output

 

[Click here to download the source code for the ChartPrinting sample for the Silverlight 4 Beta as a Visual Studio 2010 solution]

 

The Chart is added to the visual tree before the print dialog is shown - so it has plenty of time for those 0.5 second animations to play to completion while the user interacts with the dialog. The only sketchy bit is that an exceedingly fast user could possibly manage to print a Chart before the animations had run all the way to completion. Yes, well, I said it was a hack up front, didn't I? :) If you want rock-solid printing behavior, you probably ought to be re-templating the data points in order to ensure the initial visuals are exactly as you want them. But if you're just interested in printing something attractive with a minimum of fuss or inconvenience - and your users aren't hopped up on performance enhancing drugs - you'll probably be quite successful with this technique instead.

 

PS - The XPS Printer driver is a fantastic tool for testing printing scenarios like this one. By printing to a file and opening that file in the XPS Viewer application that comes with Windows, I was able to avoid wasting a single sheet of paper during the course of this investigation. Highly recommended!

This one time, at band camp... [A banded StackPanel implementation for Silverlight and WPF!]

Recently, I came across this article in the Expression Newsletter showing how to create a three-column ListBox. In it, Victor Gaudioso shows a Blend-only technique for creating a Silverlight/WPF ListBox with three columns. [And I award him extra credit for using the Silverlight Toolkit to do so! :) ] The technique described in that article is a great way to custom the interface layout without writing any code.

But it can get a little harder when the elements in the ListBox aren't all the same size: a row with larger elements may only be able to fit two items across before wrapping, while a row with smaller elements may fit four items or more! Such things can typically be avoided by specifying the exact size of all the items and the container itself (otherwise the user might resize the window and ruin the layout). But while hard-coding an application's UI size can be convenient at times, it's not always an option.

 

For those times when it's possible to write some code, specialized layout requirements can usually be implemented more reliably and more accurately with a custom Panel subclass. Victor started by looking for a property he could use to set the number of columns for the ListBox, and there's nothing like that by default. So I've written some a custom layout container to provide it - and because I've created a new Panel, this banded layout can be applied anywhere in an application - not just inside a ListBox!

The class I created is called BandedStackPanel and it behaves like a normal StackPanel, except that it includes a Bands property to specify how many vertical/horizontal bands to create. When Bands is set to its default value of 1, BandedStackPanel looks the same as StackPanel - when the value is greater than 1, additional bands show up automatically! And because BandedStackPanel is an integral part of the layout process, it's able to ensure that there are always exactly as many bands as there should be - regardless of how big or small the elements are and regardless of how the container is resized.

 

Vertical BandedStackPanel on Silverlight

 

[Click here to download the source code for BandedStackPanel and the Silverlight/WPF sample application in a Visual Studio 2010 solution]

 

The sample application shown here has a test panel on the left to play around with and a ListBox at the right to demonstrate how BandedStackPanel can be used to satisfy the original requirements of the article. The ComboBoxes at the top of the window allow you to customize the behavior of both BandedStackPanel instances. And, of course, BandedStackPanel works great on WPF as well as on Silverlight. :)

 

Horizontal BandedStackPanel on WPF

 

The way to use BandedStackPanel with a ListBox is the same as any other ItemsControl layout customization: via the ItemsControl.ItemsPanel property:

<ListBox>
    <ListBox.ItemsPanel>
        <ItemsPanelTemplate>
            <delay:BandedStackPanel Bands="3"/>
        </ItemsPanelTemplate>
    </ListBox.ItemsPanel>
    <ListBoxItem Content="ListBoxItem 0"/>
    <ListBoxItem Content="ListBoxItem 1"/>
    <ListBoxItem Content="ListBoxItem 2"/>
    ...
</ListBox>

 

That's pretty much all there is to it! The Silverlight/WPF layout system is very powerful and can be made to do all kinds of weird and wonderful things without writing a single line of code. But for those times when your needs are very specific, nothing beats a custom Panel for really nailing the scenario!

 

PS - The implementation of BandedStackPanel is fairly straightforward. The only real complexity is abstracting out the handling of both the horizontal and vertical orientations so the same code can be used for both. I followed much the same approach the Silverlight Toolkit's WrapPanel uses and introduced a dedicated OrientedLength class that allows the code to deal in terms of primary/secondary growth directions instead of specifically manipulating width and height. Once the abstraction of OrientedLength is in place, the implementations of MeasureOverride and ArrangeOverride are pretty much what you'd expect. Here they are for those who might be interested:

/// <summary>
/// Implements custom measure logic.
/// </summary>
/// <param name="constraint">Constraint to measure within.</param>
/// <returns>Desired size.</returns>
protected override Size MeasureOverride(Size constraint)
{
    var bands = Bands;
    var orientation = Orientation;
    // Calculate the Size to Measure children with
    var constrainedLength = new OrientedLength(orientation, constraint);
    constrainedLength.PrimaryLength = double.PositiveInfinity;
    constrainedLength.SecondaryLength /= bands;
    var availableLength = constrainedLength.Size;
    // Measure each child
    var band = 0;
    var levelLength = new OrientedLength(orientation);
    var usedLength = new OrientedLength(orientation);
    foreach (UIElement child in Children)
    {
        child.Measure(availableLength);
        // Update for the band/level of this child
        var desiredLength = new OrientedLength(orientation, child.DesiredSize);
        levelLength.PrimaryLength = Math.Max(levelLength.PrimaryLength, desiredLength.PrimaryLength);
        levelLength.SecondaryLength += desiredLength.SecondaryLength;
        // Move to the next band
        band = (band + 1) % bands;
        if (0 == band)
        {
            // Update for the complete level; reset for the next one
            usedLength.PrimaryLength += levelLength.PrimaryLength;
            usedLength.SecondaryLength = Math.Max(usedLength.SecondaryLength, levelLength.SecondaryLength);
            levelLength.PrimaryLength = 0;
            levelLength.SecondaryLength = 0;
        }
    }
    // Update for the partial level at the end
    usedLength.PrimaryLength += levelLength.PrimaryLength;
    usedLength.SecondaryLength = Math.Max(usedLength.SecondaryLength, levelLength.SecondaryLength);
    // Return the used size
    return usedLength.Size;
}

/// <summary>
/// Implements custom arrange logic.
/// </summary>
/// <param name="arrangeSize">Size to arrange to.</param>
/// <returns>Used size.</returns>
protected override Size ArrangeOverride(Size arrangeSize)
{
    var bands = Bands;
    var orientation = Orientation;
    var count = Children.Count;
    // Prepare the Rect to arrange children with
    var arrangeLength = new OrientedLength(orientation, arrangeSize);
    arrangeLength.SecondaryLength /= bands;
    // Arrange each child
    for (var i = 0; i < count; i += bands)
    {
        // Determine the length of the current level
        arrangeLength.PrimaryLength = 0;
        arrangeLength.SecondaryOffset = 0;
        for (var band = 0; (band < bands) && (i + band < count); band++)
        {
            var desiredLength = new OrientedLength(orientation, Children[i + band].DesiredSize);
            arrangeLength.PrimaryLength = Math.Max(arrangeLength.PrimaryLength, desiredLength.PrimaryLength);
        }
        // Arrange each band within the level
        for (var band = 0; (band < bands) && (i + band < count); band++)
        {
            Children[i + band].Arrange(arrangeLength.Rect);
            arrangeLength.SecondaryOffset += arrangeLength.SecondaryLength;
        }
        // Update for the next level
        arrangeLength.PrimaryOffset += arrangeLength.PrimaryLength;
    }
    // Return the arranged size
    return arrangeSize;
}

The customer is always right [Updated free tool and source code to prevent a machine from going to sleep!]

It was a few months back that I released Insomnia, a simple utility to prevent a computer from entering sleep mode. (For more on why that can be desirable (or other details about what Insomnia is and how it works), please refer to the original post.) Insomnia is a very simple program (it boils down to a single Win32 API call), but it fills a need many of us have - and the feedback I've gotten has been much appreciated!

 

Insomnia application

[Click here to download the Insomnia application along with its complete source code.]

 

My original post explains why Insomnia makes its window Topmost: "so it's always visible and people will be less likely to accidentally leave their computers sleep-less". My reasoning made plenty of sense to me (obviously!), but I received some public and private requests (like these) to add the ability to minimize Insomnia to the tray. I'm not one to argue with customers, so I decided to spend a commute adding the requested feature. Fortunately, I've already written and shared a WPF-based "minimize to tray" implementation, so I added that file to the Insomnia project and pasted the single line of code it took to enable "minimize to tray". And though I was done, I still had most of the bus ride left... :)

 

Insomnia minimized to the tray

 

So I figured I'd address the other popular request while I was at it: the ability to start Insomnia already minimized. To do that, I added the following code to the constructor which looks for a "-minimize" argument on the command-line and starts Insomnia minimized when it's present:

// Start minimized if requested via the command-line
foreach (var arg in Environment.GetCommandLineArgs())
{
    if (0 == string.Compare(arg, "-minimize", true))
    {
        Loaded += delegate { WindowState = WindowState.Minimized; };
    }
}
Aside: Because I'm using the Loaded event, there can be a brief instant where Insomnia shows up on the screen before minimizing itself. While my initial implementation actually set the Minimized state directly from the constructor, there's enough going on at that point (and enough non-standard window settings in Insomnia) that WPF got confused and showed a small, empty window even though the application was minimized. I probably could have added more code to suppress that, but this implementation is so clean and obvious about what it's doing that I didn't want to trade it in for an alternate one that would be more complex and hacky.

 

You know, when everything is said and done, I find that I really like Insomnia's new ability to get out of the way by minimizing to the tray. :) So thanks for everyone's feedback here - and please keep the great suggestions coming!

 

 

PS - If you want a simple way to start Insomnia minimized, create a customized shortcut:

  1. Right-click on the Insomnia program
  2. Choose "Create shortcut"
  3. Right-click on "Insomnia - Shortcut"
  4. Choose "Properties"
  5. Add  -minimize to the end of the command line
  6. Press OK
  7. Optionally: Move that shortcut to the "Startup" folder in the Start Menu to have Insomnia start minimized every time you log in to Windows
Editing Insomnia shortcut

The Code Not Taken [Comparing two ways of creating a full-size Popup in Silverlight - then picking the best]

Update on 2010-06-17: Silverlight 4's behavior is different than Silverlight 3's (which is described below); I examine the difference in this follow-up post.

 

When it comes time to display a Popup that overlays the entire Silverlight plug-in, most people do it the same way. Unfortunately, although the typical approach appears correct at first glance (and may even survive a test pass!), there are some problems that are just about guaranteed to surface once the application is released. The purpose of this post is to educate people about those issues - and suggest an alternative approach that is easier to get right.

 

[Click here to download the complete source code for the sample (a Visual Studio 2010 (Beta 2) project targeting Silverlight 3)]

 

Let's start with a pretty typical first attempt at creating a full-plug-in Popup. This code uses Application.Current.Host.Content to get the size of the plug-in, creates a Popup with some simple content, sizes the content to match the plug-in's dimensions, and opens the Popup:

var root = Application.Current.Host.Content;
var popup = new Popup();
var child = CreateChildElement();
child.Width = root.ActualWidth;
child.Height = root.ActualHeight;
popup.Child = child;
popup.IsOpen = true;
Aside: I'm following Raymond Chen's convention that code in italics is wrong. So please don't start copy/pasting quite yet... :)

Here's how the sample application looks when we run it:

Initial state

When you press the top button to run the snippet above, the CreateChildElement method creates an Image element (showing the Silverlight logo) set to stretch horizontally and vertically. Everything looks fine immediately after pressing the button, but here's what happens if you make the browser a little bigger while the Popup is still on screen:

Resize not handled

Oops, we forgot to handle the resize event. No big deal - except that it's actually worse than that... Here's what things look like if you instead press the top button when the browser's zoom setting is set to 50% (as indicated by the magnifying glass at the bottom right of the browser window):

Zoom not respected

Ouch! As it turns out, this browser zoom problem is what seems to trip people up the most. When the browser is zoomed, some of the coordinates Silverlight exposes are affected - and Host.Content is one of them. Unless the browser zoom is at exactly 100%, basing anything on Host.Content's ActualWidth/ActualHeight without manually compensating for the zoom results in sizes that are too small (like we see here) or too large.

 

Okaaay, let's correct the resize thing first because it's easy and then we'll worry about zoom. Here's a simple modification of the code above to handle the Host.Content's Resized event:

var root = Application.Current.Host.Content;
var popup = new Popup();
var child = CreateChildElement();
EventHandler rootResized = delegate
{
    child.Width = root.ActualWidth;
    child.Height = root.ActualHeight;
};
root.Resized += rootResized;
rootResized(null, null);
popup.Child = child;
popup.IsOpen = true;
Aside: You may be wondering why I didn't use a Binding to synchronize the Width and Height properties instead of futzing around with an event handler like this. Well, I would have liked to, but there's the small issue that Silverlight doesn't provide property change notifications for ActualWidth/ActualHeight changes. So while I do recommend using Binding whenever you can, that's not really an option here.

So let's run the sample application and press the middle button to see how those changes worked out:

Zoom undone

Well, things look right at first. Though I don't demonstrate it here, we've successfully fixed the browser resize issue and that's good. But something is still wrong in the image above... If you look carefully, you can see that the browser zoom is set at 50% - yet somehow the image is sized correctly despite us not doing any work to handle the browser's zoom setting yet. How can that be? Hold on, Sherlock, there's another clue in the image: look at the size of the buttons. Yeah, those buttons are not the size they should be for the 50% zoom setting that's active (refer back to the previous image if you don't believe me). Those buttons are at the 100% size - wha??

Aside: Hey, don't feel bad, it weirded me out, too. :)

It turns out that when you attach an event handler to the Resized event, Silverlight disables its support for browser zoom. The reason being that Silverlight assumes the application has chosen to handle that event because it wants full control over the zoom experience (via ZoomFactor and Zoomed, perhaps). Now that's really kind of thoughtful of it and everything - but in this case it's not what we want. In fact, that behavior introduces a somewhat jarring experience because the graphics visibly snap between 50% and 100% as the Resized event handler is attached and detached. Our sample application is perfectly happy to respect the browser's zoom settings; it just wants to know when it has been resized so it can update the Popup's dimensions. Irresistible force, meet immovable object...

 

Like I said at the beginning, most people seem to gravitate to the approach above. But there's another option - one which I'll suggest is better because it doesn't suffer from either of these problems: use Application.Current.RootVisual instead!

var root = Application.Current.RootVisual as FrameworkElement;
var popup = new Popup();
var child = CreateChildElement();
SizeChangedEventHandler rootSizeChanged = delegate
{
    child.Width = root.ActualWidth;
    child.Height = root.ActualHeight;
};
root.SizeChanged += rootSizeChanged;
rootSizeChanged(null, null);
popup.Child = child;
popup.IsOpen = true;

As you can see, the code looks nearly identical to what we had before (except it's not in italics!). But by keeping all the math inside the domain of the plug-in, the need to account for browser zoom or hook the troublesome Resized event goes away completely! Instead, this code responds to the RootVisual's SizeChanged event and behaves correctly at first, when the browser is resized, for different zoom settings, and even when the zoom setting is changed while the Popup is visible!

Success!

What more could you ask for?

 

There are just two things worth calling out:

  1. The RootVisual must be an instance of a FrameworkElement-based class (which it is by default and 99.9% of the rest of the time; MainPage is a UserControl and that derives from FrameworkElement).
  2. If the size of the RootVisual is explicitly set for some reason, the Popup will match that size and not the size of the plug-in itself (though I can't imagine why you'd do this).

Those small caveats aside, it's been my experience that the RootVisual approach is more naturally correct - by which I mean that it tends to be right by virtue of its simplicity and the fact that it hooks up to the right thing. I don't promise that it's the best choice for all scenarios, but I'll suggest that it's worth considering first for most scenarios. There are probably ways to make either approach do what you want - but I prefer to start with the one that's less troublesome! :)

Flattery will get you everywhere [Html5Canvas source code now available on CodePlex!]

A few months ago, I described a proof-of-concept project and learning exercise I'd worked on to implement some of the basics of the HTML 5 <canvas> specification using Silverlight as the underlying platform: HTML 5 <canvas> announcement, fix for other cultures. As I explain in the introductory post, I didn't set out to come up with the most efficient, most complete implementation - just to get some familiarity with the <canvas> specification and see what it would be like to implement it with Silverlight. Html5Canvas was a lot of fun and even generated a small amount of buzz when I posted it...

Sample application in Firefox

Earlier today, fellow programmer Jon Davis emailed me to ask if he could put that sample up on CodePlex to share with others in the community. I replied that he was welcome to do so (all the code I post is under the OSI-approved Ms-PL license) - and soon got a reply from Jon pointing me to:

http://slcanvas.codeplex.com/

Jon has written about his motivations here - I encourage interested parties to have a read. [And I swear I didn't bribe him to say nice things! :) ] This was not the first time I'd been asked about putting the source code for HTML 5 <canvas> on CodePlex, so if you've been waiting for an opportunity like this, please follow up with Jon to see how you might be able to help contribute to the effort!

Looks the same - with half the overhead! [Update to free ConvertClipboardRtfToHtmlText tool and source code gives more compact output; Can you do better?]

I recently updated my ConvertClipboardRtfToHtmlText tool to work with Visual Studio 2010 (Beta 2). This utility takes the RTF clipboard format Visual Studio puts on the clipboard, converts it into HTML, and substitutes the converted text for pasting into web pages, blog posts, etc.. It works great and I use it all the time for my blog.

In the comments to that post, kind reader Sameer pointed out that the converted HTML was more verbose than it needed to be - and I quickly replied that it wasn't my fault. :) Here's the example Sameer gave (which is particularly inefficient):

public partial class

And here's the corresponding HTML (on multiple lines because it's so long):

<pre>
<span style='color:#000000'></span>
<span style='color:#0000ff'>public</span>
<span style='color:#000000'> </span>
<span style='color:#0000ff'>partial</span>
<span style='color:#000000'> </span>
<span style='color:#0000ff'>class</span>
</pre>

Yup, that's almost obnoxiously inefficient: there's a useless black span at the beginning and a bunch of pointless color swapping for both of the space characters. Something more along the lines of the following would be much better:

<pre style='color:#0000ff'>public partial class</pre>

The HTML for both examples ends up looking exactly the same in a web browser, so wouldn't it be nice if the tool produced the second, more compact form?

I thought so, too!

 

[Click here to download the ConvertClipboardRtfToHtmlText tool along with its complete source code.]

 

I had a bit of spare time the other night and decided to make a quick attempt at optimizing the output of ConvertClipboardRtfToHtmlText according to some ideas I'd been playing around with. Specifically, instead of outputting the converted text as it gets parsed, the new code builds an in-memory representation of the entire clipboard contents and associated color changes. After everything has been loaded, it performs some basic optimization steps to remove unnecessary color changes by ignoring whitespace and collapsing text runs. Once that's been done, the optimized HTML is placed on the clipboard just like before.

Here's what the relevant code looks like (recall that this tool compiles for .NET 2.0, so it's can't use Linq):

int j = runs.Count - 1;
while (0 <= j)
{
    Run run = runs[j];

    // Remove color changes for whitespace runs
    if (0 == run.Text.Trim().Length)
    {
        runs.RemoveAt(j);
        if (j < runs.Count)
        {
            runs[j].Text = run.Text + runs[j].Text;
        }
        else
        {
            j--;
        }
        continue;
    }

    // Remove redundant color changes
    if ((j + 1 < runs.Count) && (run.Color == runs[j + 1].Color))
    {
        runs.RemoveAt(j);
        runs[j].Text = run.Text + runs[j].Text;
    }

    j--;
}

// Find most common color
Dictionary<Color, int> colorCounts = new Dictionary<Color, int>();
foreach (Run run in runs)
{
    if (!colorCounts.ContainsKey(run.Color))
    {
        colorCounts[run.Color] = 0;
    }
    colorCounts[run.Color]++;
}
Color mostCommonColor = Color.Empty;
int mostCommonColorCount = 0;
foreach (Color color in colorCounts.Keys)
{
    if (mostCommonColorCount < colorCounts[color])
    {
        mostCommonColor = color;
        mostCommonColorCount = colorCounts[color];
    }
}

...

// Build HTML for run stream
sb.Length = 0;
sb.AppendFormat("<pre style='color:#{0:x2}{1:x2}{2:x2}'>", mostCommonColor.R, mostCommonColor.G, mostCommonColor.B);
foreach (Run run in runs)
{
    if (run.Color != mostCommonColor)
    {
        sb.AppendFormat("<span style='color:#{0:x2}{1:x2}{2:x2}'>", run.Color.R, run.Color.G, run.Color.B);
    }
    sb.Append(run.Text);
    if (run.Color != mostCommonColor)
    {
        sb.Append("</span>");
    }
}
sb.Append("</pre>");

 

The code comments explain what's going on and it's all pretty straightforward. The one sneaky thing is the part that finds the most commonly used color and makes that the default color of the entire block. By doing so, the number of span elements can be reduced significantly: switching to that common color becomes as simple as exiting the current span (which needed to happen anyway).

So was this coding exercise worth the effort? Is the resulting HTML noticeably smaller, or was this all just superficial messing around? To answer that, let's look at some statistics for converting the entire ConvertClipboardRtfToHtmlText.cs file:

Normal Optimized Change
Character count of .CS file 11,996 11,996 N/A
Character count converted HTML 32,091 21,158 -34%
Extra characters for HTML representation 20,095 9,162 -54%

Hey, those are pretty good results for just an hour's effort! And not only is the new representation significantly smaller, it's also less cluttered and easier to read - so it's easier to deal with, too. I'm happy with the improvement and switched to the new version of ConvertClipboardRtfToHtmlText a couple of posts ago. So if you notice my blog posts loading slightly faster than before, this could be why... :)

 

A challenge just for fun: I haven't thought about it too much (which could be my downfall), but I'll suggest that the output of the new approach is just about optimal for what it's doing. Every color change is now necessary, and they're about as terse as they can be. Unless I decide to throw away some information (ex: by using the 3-character HTML color syntax) or change the design (ex: by creating a bunch of 1-character CSS classes), I don't think things can get much better than this and still accurately reproduce the appearance of the original content in Visual Studio. Therefore, if you can reduce the overhead for this version of ConvertClipboardRtfToHtmlText.cs by an additional 5% (without resorting to invalid HTML), I will credit you and your technique in a future blog post! :)

Sometimes it takes a village to solve a problem [Workaround for a Visual Studio 2008 design-time issue with the WPF Toolkit when Blend 3 is installed]

Back in June, the "WPF" half of Silverlight/WPF Charting made its first official appearance with the release of the June 2009 WPF Toolkit. Having Charting be part of both the Silverlight Toolkit and the WPF Toolkit was always a goal of mine and I've heard from lots of customers who are using Charting with great success on WPF. By and large, everyone's feedback has been positive and the community enthusiasm has been fantastic to see!

Unfortunately there's one problem that's come up a few times which nobody really had enough context to solve. A user with Visual Studio 2008 and the June 2009 WPF Toolkit installed would be happily using the Data Visualization assembly (Charting) in their projects and everything would be working fine for weeks on end. Then one day they'd install Blend 3 and all of a sudden Visual Studio 2008 would fail trying to open the Charting project with a confusing "Problem Loading" error from the design surface:

'/Microsoft.Windows.Design.Developer;component/themes/GridAdorners.xaml' value cannot be assigned to property 'Source' of object 'System.Windows.ResourceDictionary'. Cannot create instance of 'GenericTheme' defined in assembly 'Microsoft.Windows.Design.Interaction, Version=3.5.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a'. Exception has been thrown by the target of an invocation.

The first thing most people would try is uninstalling Blend 3 - which fortunately "fixes" the problem - but makes for a crummy long-term solution...

Fortunately, we managed to get the right people from the Silverlight Toolkit, Blend 3, and Visual Studio 2008 teams in a room a few days ago to hash this out. The first bit of good news is that we did sort out enough of what's going on to come up with an easy workaround. The second bit of good news is that I've already made a change to the WPF Toolkit source code so the next official release won't trigger this problem. And the third bit of good news is that they're going to make sure the underlying issue is addressed in Visual Studio 2010 so this doesn't come up again!

Here's the official synopsis of the problem and the steps to implement the simple workaround:

Known Issue with WPF Toolkit June 2009, Visual Studio 2008, and Blend 3

If a customer has Visual Studio 2008, WPF Toolkit June 2009, and Blend 3 installed, and the WPF project in Visual Studio 2008 has a reference to System.Windows.Controls.DataVisualization.Toolkit.dll, you may see the following error message when opening the project or loading the designer:

Error 1 '/Microsoft.Windows.Design.Developer;component/themes/GridAdorners.xaml' value cannot be assigned to property 'Source' of object 'System.Windows.ResourceDictionary'. Cannot create instance of 'GenericTheme' defined in assembly 'Microsoft.Windows.Design.Interaction, Version=3.5.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a'. Exception has been thrown by the target of an invocation. Error at object 'ResourceDictionary_4'.

The problem can be triggered by dragging the Chart control from WPF Toolkit June 2009 from the Toolbox onto the WPF designer in Visual Studio.

To resolve this issue, use the following workaround:

From an account with elevated/administrative permissions, in the WPF Toolkit June 2009 install directory on the machine (typically "C:\Program Files\WPF Toolkit\v3.5.40619.1"):

  1. Rename System.Windows.Controls.DataVisualization.Toolkit.Design.dll to System.Windows.Controls.DataVisualization.Toolkit.Design.4.0.dll
  2. Rename System.Windows.Controls.DataVisualization.Toolkit.Design.pdb to System.Windows.Controls.DataVisualization.Toolkit.Design.4.0.pdb

Thank you for everyone's patience as we sorted this out. I wish we could have done so sooner, but I'm really glad we seem to have gotten to the bottom of it at last!

 

PS - If you still have problems after applying the fix, please let us know!

"I feel the need... the need for SPEED!" [Seven simple, performance-boosting tweaks for common Silverlight/WPF Charting scenarios]

No matter how fast things are, they never seem to be fast enough. Even if we had the world's most optimized code in the Silverlight/WPF Data Visualization assembly, I bet there would still be a couple of people who wanted better performance. :) Unfortunately, we have don't have the world's most optimized code, and performance concerns represent one of the most common customer issues with Charting. While I wish we had the resources to commit to a few weeks of focused performance work, things just haven't panned out like that so far.

Instead, I've got the next best thing: a collection of simple changes anyone can make to noticeably improve the performance of common scenarios with today's bits! To demonstrate the impact of each of these tips, I've created a new "Performance Tweaks" tab in my DataVisualizationDemos sample application. The controls on this new page let you pick-and-choose which optimizations you'd like to see - then allow you to run simple scenarios to get a feel for how effective those tweaks are. And because DataVisualizationDemos compiles for and runs on Silverlight 3, Silverlight 4, WPF 3.5, and WPF 4, it's easy to get a feel for how much benefit you can expect to see on any supported platform.

For each of the seven tips below, I list simple steps that show the performance benefit of the tip using the new sample page. Performance improvements are best experienced in person, so I encourage interested readers to download the demo and follow along at home! :)

 

[Click here to download the complete source code for the cross-platform DataVisualizationDemos sample application.]

 

Performance Tweaks Demo

 

Tip: Use fewer data points

Okay, this first tip is really obvious - but it's still valid! Fewer data points means less to process, less to manage, and less to render - all of which mean that scenarios with few points to tend to be faster and smoother than those with many points. You can often reduce the number of points in a scenario by plotting fewer values, aggregating similar values together, or by showing subsets of the whole data. This approach isn't always practical, but when it is, it's usually a big win - and has the added benefit that the resulting chart is less cluttered and can even be easier to understand!

Aside: Typical performance guidance for Silverlight and WPF recommends capping the total number of UI elements in the low- to mid-hundreds. Given that each of Charting's DataPoint instances instantiates around 5 UI elements, it's easy to see why rendering a chart with 1000 data points can start to bog the system down.

Slow: Reset, check only Simplified Template, Create Chart, Add Series, 1000 points, Populate

Fast: Reset, check only Simplified Template, Create Chart, Add Series, 50 points, Populate

 

Tip: Turn off the fade in/out VSM animations

By default, data points fade in and fade out over the period of a half second. This fade is controlled by a Visual State Manager state transition in the usual manner and therefore each DataPoint instance runs its own private animation. When there are lots of data points coming and going, the overhead of all these parallel animations can start to slow things down. Fortunately, the DataPoint classes are already written to handle missing states, so getting rid of these animations is a simple matter of modifying the default Template to remove the "RevealStates"/"Shown" and/or "RevealStates"/"Hidden" states.

Slow: Reset, uncheck everything, Create Chart, Add Series, 100 points, Populate

Fast: Reset, check only No VSM Transition, Create Chart, Add Series, 100 points, Populate

 

Tip: Change to a simpler DataPoint Template

I mentioned above that overwhelming the framework with lots of UI elements can slow things down. So in cases where it's not possible to display fewer points, it's still possible to display fewer elements by creating a custom Template that's simpler than the default. There is a lot of room here to creatively balance simplicity (speed) and visual appeal (attractiveness) here, but for the purposes of my demonstration, I've gone with something that's about as simple as it gets:

<Style x:Key="SimplifiedTemplate" TargetType="charting:ScatterDataPoint">
    <Setter Property="Template">
        <Setter.Value>
            <ControlTemplate TargetType="charting:ScatterDataPoint">
                <Grid
                    Width="5"
                    Height="5"
                    Background="{TemplateBinding Background}"/>
            </ControlTemplate>
        </Setter.Value>
    </Setter>
</Style>
Aside: This tip and the previous one are the only two tips that are mutually exclusive (because they both involve providing a custom DataPointStyle for the series). Otherwise, you have complete freedom to mix-and-match whatever tweaks work well for your scenario!

Slow: Reset, uncheck everything, Create Chart, Add Series, 100 points, Populate

Fast: Reset, check only Simplified Template, Create Chart, Add Series, 100 points, Populate

 

Tip: Specify fixed ranges for the axes

For convenience and ease-of-use, Charting's axes automatically analyze the data that's present in order to provide reasonable default values for their minimum, maximum, and interval. This works quite well in practice and you should hardly ever have to override the automatic range. However, the code that determines the automatic axis ranges isn't free. This cost isn't significant for static data, but if the underlying values are changing a lot, the small cost can accumulate and become noticeable. If you're fortunate enough to know the ranges over which your data will vary, explicitly specifying the axes and giving them fixed ranges will completely eliminate this overhead.

Slow: Silverlight 3, Reset, uncheck everything, Create Chart, Add Series, 100 points, Populate, Change Values

Fast: Silverlight 3, Reset, check only Set Axis Ranges, Create Chart, Add Series, 100 points, Populate, Change Values

 

Tip: Add the points more efficiently

Silverlight/WPF Charting is built around a model where any changes to the data are automatically shown on the screen. This is accomplished by detecting classes that implement the INotifyPropertyChanged interface and collections that implement the INotifyCollectionChanged interface and registering to find out about changes as they occur. This approach is incredibly easy for developers because it means all they have to touch is their own data classes - and Charting handles everything else! However, this system can be counterproductive in one scenario: starting with an empty collection and adding a bunch of data points all at once. By default, each new data point generates a change notification which prompts Charting to re-analyze the data, re-compute the axis properties, re-layout the visuals, etc.. It would be more efficient to add all the points at once and then send a single notification to Charting that its data has changed. Unfortunately, the otherwise handy ObservableCollection class doesn't offer a good way of doing this. Fortunately, it's pretty easy to add:

// Custom class adds an efficient AddRange method for adding many items at once
// without causing a CollectionChanged event for every item
public class AddRangeObservableCollection<T> : ObservableCollection<T>
{
    private bool _suppressOnCollectionChanged;

    public void AddRange(IEnumerable<T> items)
    {
        if (null == items)
        {
            throw new ArgumentNullException("items");
        }
        if (items.Any())
        {
            try
            {
                _suppressOnCollectionChanged = true;
                foreach (var item in items)
                {
                    Add(item);
                }
            }
            finally
            {
                _suppressOnCollectionChanged = false;
                OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Reset));
            }
        }
    }

    protected override void OnCollectionChanged(NotifyCollectionChangedEventArgs e)
    {
        if (!_suppressOnCollectionChanged)
        {
            base.OnCollectionChanged(e);
        }
    }
}

Slow: Reset, uncheck everything, Create Chart, Add Series, 500 points, Populate

Fast: Reset, check only Efficient Collection, Create Chart, Add Series, 500 points, Populate

 

Tip: Disable the data change animations

Because people perceive changes better when they're able to see the change happening, Charting animates all value changes to the underlying data points. So instead of a bar in a bar chart suddenly getting longer when its bound data value changes, the bar smoothly animates from its old value to its new value. This approach has another benefit: it calls attention to the value that's changed in a way that an instantaneous jump wouldn't. However, animating value changes can take a toll when there are lots of changes happening at the same time or when there are a continuous stream of changes over a long time. In cases like these, it can be helpful to lessen the default duration of the animation (a half second) by lowering the value of the series's TransitionDuration property - all the way down to 0 if that's what it takes.

Slow: Silverlight 3, Reset, uncheck everything, Create Chart, Add Series, 100 points, Populate, Change Values

Fast: Silverlight 3, Reset, check only Zero Transition Duration, Create Chart, Add Series, 100 points, Populate, Change Values

 

Tip: Use a different platform or version

Though they offer basically identical APIs, Silverlight and WPF are implemented very differently under the covers - and what performs poorly on one platform may run quite well on the other. Even staying with the same platform, Silverlight 4 contains a number of improvements relative to Silverlight 3 (as does WPF 4 vs. WPF 3.5). Therefore, if you have the freedom to choose your target platform, a bit of prototyping early on may help to identify the best choice for your scenario.

Slow: Silverlight 3, Reset, uncheck everything, Create Chart, Add Series, 100 points, Populate, Change Values

Fast: WPF 3.5, Reset, uncheck everything, Create Chart, Add Series, 100 points, Populate, Change Values

The source code IS (still) the executable [Updated CSI, a C# interpreter (with source and tests) for .NET 4]

I published CSI, a simple C# interpreter, exactly one year ago. In that introductory post, I explained how CSI offers a nice alternative to typical CMD-based batch files by enabling the use of the full .NET framework and stand-alone C# source code files for automating simple, repetitive tasks. CSI accomplishes this by compiling source code "on the fly" and executing the resulting assembly seamlessly. What this means for users is that it's easy to represent tasks with a simple, self-documenting code file and never need to worry about compiling a binary, trying to keep it in sync with changes to the code, or even tracking project files and remembering how to build it in the first place!

Aside: The difference may not seem like much at first, but once you start thinking in terms of running .CS files instead of running .EXE files, things just seem to get simpler and more transparent! :)

And I'm happy to say that today, on the first birthday of CSI's public introduction, I'm releasing a new version!

 

[Click here to download CSI for .NET 4.0, 3.5, 3.0, 2.0, and 1.1 - along with the complete source code and test suite.]

 

Notes:

  • Today's release of CSI includes CSI40.exe, a version of CSI that uses the .NET 4 Beta 2 Framework to enable the execution of programs that take full advantage of the latest .NET Framework! Correspondingly, the -R "include common references" switch now includes the new Microsoft.CSharp.dll and System.Xaml.dll assemblies that are part of .NET 4. This new version of CSI makes it easy to take advantage of the late-binding dynamic type, the push-based IObservable interface, the handy Tuple class, or any of the other neat, new features of .NET 4.
  • CSI previously required a program's entry point be of the Main(string[] args) kind and would fail if asked to run a program using the (also valid) Main() form. This restriction has been lifted and all new flavors of CSI will successfully call into a parameter-less entry point.
  • CSI could formerly fail to execute programs requiring the single-threaded apartment model. While this probably wasn't an issue for most people because apartment models don't matter much in general, if you were working in an area where it did matter (like WPF), things were unnecessarily difficult. No longer - CSI's entry point has been decorated with the STAThread attribute, and it now runs STA programs smoothly.
  • Please note that I have not updated the .NET 1.1 version of CSI, CSI11.exe, for this release. There don't seem to be enough people running .NET 1.1 (and expecting updates!) for it to be worth creating a virtual machine and installing .NET 1.1 just to compile a new version of CSI for that platform. Therefore, the version of CSI11.exe that comes with this release is the previous version and doesn't include the changes described above.
  • The CSI.exe in the root of the release folder corresponds to the .NET 3.5 version of CSI; this is the "official" version just as it was with the previous release. The file CSI40.exe in the same folder is the .NET 4 Beta 2 version of CSI (the obvious heir apparent, but not king quite yet...). Previous versions (CSI30.exe, CSI20.exe, and CSI11.exe) can be found in the "Previous Versions" folder.
  • The -R "include common references" switch of the .NET 3.5 version of CSI no longer includes a reference to System.Data.DataSetExtensions.dll because that assembly is unlikely to be used in common CSI scenarios. If needed, a reference can be added via -r System.Data.DataSetExtensions.dll in the usual manner. (The .NET 4 version of CSI's -R doesn't reference this assembly, either, but because this is the first release of CSI40.exe, it's not a breaking change.)

 

For fun, here's an example of the new Main() support:

C:\T>type Main.cs
public class Test
{
  public static void Main()
  {
    System.Console.WriteLine("Hello world");
  }
}

C:\T>CSI Main.cs
Hello world

 

And here's an example of the new ability to run WPF code. Note that I've used the RegisterCSI.cmd script (included with the release; see here for details) to register the .CSI file type with Windows to make it even easier to run CSI-based programs. (And by the way, check out how easy it is to output the default style of a WPF control!)

C:\T>type WpfDefaultStyleBrowser.csi
using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Markup;
using System.Xml;

class WpfDefaultStyleBrowser
{
    [STAThread]
    public static void Main()
    {
        Style style = (new FrameworkElement()).FindResource(typeof(ContentControl)) as Style;
        XmlWriterSettings settings = new XmlWriterSettings();
        settings.Indent = true;
        settings.NewLineOnAttributes = true;
        settings.OmitXmlDeclaration = true;
        XamlWriter.Save(style, XmlWriter.Create(Console.Out, settings));
    }
}

C:\T>WpfDefaultStyleBrowser.csi
<Style
  TargetType="ContentControl" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
  <Style.Resources>
    <ResourceDictionary />
  </Style.Resources>
  <Setter
    Property="Control.Template">
    <Setter.Value>
      <ControlTemplate
        TargetType="ContentControl">
        <ContentPresenter
          Content="{TemplateBinding ContentControl.Content}"
          ContentTemplate="{TemplateBinding ContentControl.ContentTemplate}"
          ContentStringFormat="{TemplateBinding ContentControl.ContentStringFormat}" />
      </ControlTemplate>
    </Setter.Value>
  </Setter>
</Style>

 

Finally, here's the contents of the "read me" file, with the CSI syntax, release notes, and version history:

==================================================
==  CSI: C# Interpreter                         ==
==  David Anson (http://blogs.msdn.com/delay/)  ==
==================================================


Summary
=======
CSI: C# Interpreter
     Version 2010-01-04 for .NET 3.5
     http://blogs.msdn.com/delay/

Enables the use of C# as a scripting language by executing source code files
directly. The source code IS the executable, so it is easy to make changes and
there is no need to maintain a separate EXE file.

CSI (CodeFile)+ (-d DEFINE)* (-r Reference)* (-R)? (-q)? (-c)? (-a Arguments)?
   (CodeFile)+      One or more C# source code files to execute (*.cs)
   (-d DEFINE)*     Zero or more symbols to #define
   (-r Reference)*  Zero or more assembly files to reference (*.dll)
   (-R)?            Optional 'references' switch to include common references
   (-q)?            Optional 'quiet' switch to suppress unnecessary output
   (-c)?            Optional 'colorless' switch to suppress output coloring
   (-a Arguments)?  Zero or more optional arguments for the executing program

The list of common references included by the -R switch is:
   System.dll
   System.Data.dll
   System.Drawing.dll
   System.Windows.Forms.dll
   System.Xml.dll
   PresentationCore.dll
   PresentationFramework.dll
   WindowsBase.dll
   System.Core.dll
   System.Xml.Linq.dll

CSI's return code is 2147483647 if it failed to execute the program or 0 (or
whatever value the executed program returned) if it executed successfully.

Examples:
   CSI Example.cs
   CSI Example.cs -r System.Xml.dll -a ArgA ArgB -Switch
   CSI ExampleA.cs ExampleB.cs -d DEBUG -d TESTING -R


Notes
=====
CSI was inspired by net2bat, an internal .NET 1.1 tool whose author had left
Microsoft. CSI initially added support for .NET 2.0 and has now been extended
to support .NET 3.0, 3.5, and 4.0. Separate executables are provided to
accommodate environments where the latest version of .NET is not available.


Version History
===============

Version 2010-01-04
Add .NET 4 (Beta 2) version
Minor updates

Version 2009-01-06
Initial public release

Version 2005-12-15
Initial internal release

Blogging code samples stays easy [Update to free ConvertClipboardRtfToHtmlText tool and source code for Visual Studio 2010!]

A big part of my blog is sharing code and so most of the posts I write include sample source. Therefore, it's pretty important to me that the code I share be easy for readers to understand and use. For me, that means I want it to be static, syntax-highlighted, and in text form so it's copy+paste-able and indexable by search engines.

I'm a big fan of keeping things simple and avoiding dependencies, so I ended up writing a very simple tool about two years ago called ConvertClipboardRtfToHtmlText. As you can see from the original ConvertClipboardRtfToHtmlText post and the subsequent follow-up, it's a very simple tool intended for a very specific scenario. That said, it works beautifully for my purposes and I've used it to blog every snippet of source code since then!

So I was surprised and a little disappointed when it stopped working recently... Why? Because I switched to Visual Studio 2010 (Beta 2) and they've changed the RTF clipboard format slightly with that release. Now, while I'm sure VS 2010's RTF is still 100% legal RTF, it's different enough from VS 2008's output that ConvertClipboardRtfToHtmlText chokes on it. Clearly, it was time to dust off the source code and make it work again! :)

Not surprisingly, the update process was quite painless - and by tweaking the code slightly, I've arrived at an implementation that works well for both versions of Visual Studio: 2008 and 2010! The source code download includes a VS 2010 solution and project, but takes advantage of the multi-targeting capabilities of Visual Studio to compile for the .NET 2.0 Framework, ensuring that the resulting executable runs pretty much everywhere.

As long as I was touching the code, I added the following simple banner text:

ConvertClipboardRtfToHtmlText
Version 2009-12-19 - http://blogs.msdn.com/delay/

Converts the Visual Studio 2008/2010 RTF clipboard format to HTML by replacing
the RTF clipboard contents with its HTML representation in text form.

Instructions for use:
1. Copy syntax-highlighted text to the clipboard in Visual Studio
2. Run ConvertClipboardRtfToHtmlText (which has no UI and exits immediately)
3. Paste HTML text into an editor, web page, blog post, etc.

So if you're in the market for a nice way to blog code and you're using Visual Studio 2008 or 2010, maybe ConvertClipboardRtfToHtmlText can help you out!

 

[Click here to download the ConvertClipboardRtfToHtmlText tool along with its complete source code.]

 

Here's the complete source code for ConvertClipboardRtfToHtmlText, provided by - you guessed it! - ConvertClipboardRtfToHtmlText:

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

// NOTE: This is NOT a general-purpose RTF-to-HTML converter! It works well
// enough on the input I've tried, but may break in other scenarios.
// TODO: Convert into a real application with a notify icon and hotkey.
namespace ConvertClipboardRtfToHtmlText
{
    static class ConvertClipboardRtfToHtmlText
    {
        private const string colorTbl = "\\colortbl;";
        private const string colorFieldTag = "cf";
        private const string tabExpansion = "    ";

        [STAThread]
        static void Main()
        {
            Console.WriteLine("ConvertClipboardRtfToHtmlText");
            Console.WriteLine("Version 2009-12-19 - http://blogs.msdn.com/delay/");
            Console.WriteLine();
            Console.WriteLine("Converts the Visual Studio 2008/2010 RTF clipboard format to HTML by replacing");
            Console.WriteLine("the RTF clipboard contents with its HTML representation in text form.");
            Console.WriteLine();
            Console.WriteLine("Instructions for use:");
            Console.WriteLine("1. Copy syntax-highlighted text to the clipboard in Visual Studio");
            Console.WriteLine("2. Run ConvertClipboardRtfToHtmlText (which has no UI and exits immediately)");
            Console.WriteLine("3. Paste HTML text into an editor, web page, blog post, etc.");
            if (Clipboard.ContainsText(TextDataFormat.Rtf))
            {
                // Create color table, populate with default color
                List<Color> colors = new List<Color>();
                Color defaultColor = Color.FromArgb(0, 0, 0);
                colors.Add(defaultColor);

                // Get RTF
                string rtf = Clipboard.GetText(TextDataFormat.Rtf);

                // Strip meaningless "\r\n" pairs (used by VS 2008)
                rtf = rtf.Replace("\r\n", "");

                // Parse color table
                int i = rtf.IndexOf(colorTbl);
                if (-1 != i)
                {
                    i += colorTbl.Length;
                    while ((i < rtf.Length) && ('}' != rtf[i]))
                    {
                        // Add color to color table
                        SkipExpectedText(rtf, ref i, "\\red");
                        byte red = (byte)ParseNumericField(rtf, ref i);
                        SkipExpectedText(rtf, ref i, "\\green");
                        byte green = (byte)ParseNumericField(rtf, ref i);
                        SkipExpectedText(rtf, ref i, "\\blue");
                        byte blue = (byte)ParseNumericField(rtf, ref i);
                        colors.Add(Color.FromArgb(red, green, blue));
                        SkipExpectedText(rtf, ref i, ";");
                    }
                }
                else
                {
                    throw new NotSupportedException("Missing/unknown colorTbl.");
                }

                // Find start of text and parse
                i = rtf.IndexOf("\\fs");
                if (-1 != i)
                {
                    // Skip font size tag
                    while ((i < rtf.Length) && (' ' != rtf[i]))
                    {
                        i++;
                    }
                    i++;

                    // Begin building HTML text
                    StringBuilder sb = new StringBuilder();
                    sb.AppendFormat("<pre><span style='color:#{0:x2}{1:x2}{2:x2}'>",
                        defaultColor.R, defaultColor.G, defaultColor.B);
                    while (i < rtf.Length)
                    {
                        if ('\\' == rtf[i])
                        {
                            // Parse escape code
                            i++;
                            if ((i < rtf.Length) &&
                                (('{' == rtf[i]) || ('}' == rtf[i]) || ('\\' == rtf[i])))
                            {
                                // Escaped '{' or '}' or '\'
                                sb.Append(rtf[i]);
                            }
                            else
                            {
                                // Parse tag
                                int tagEnd = rtf.IndexOf(' ', i);
                                if (-1 != tagEnd)
                                {
                                    if (rtf.Substring(i, tagEnd - i).StartsWith(colorFieldTag))
                                    {
                                        // Parse color field tag
                                        i += colorFieldTag.Length;
                                        int colorIndex = ParseNumericField(rtf, ref i);
                                        if ((colorIndex < 0) || (colors.Count <= colorIndex))
                                        {
                                            throw new NotSupportedException("Bad color index.");
                                        }

                                        // Change to new color
                                        sb.AppendFormat(
                                            "</span><span style='color:#{0:x2}{1:x2}{2:x2}'>",
                                            colors[colorIndex].R, colors[colorIndex].G,
                                            colors[colorIndex].B);
                                    }
                                    else if ("tab" == rtf.Substring(i, tagEnd - i))
                                    {
                                        sb.Append(tabExpansion);
                                    }
                                    else if ("par" == rtf.Substring(i, tagEnd - i))
                                    {
                                        sb.Append("\r\n");
                                    }

                                    // Skip tag
                                    i = tagEnd;
                                }
                                else
                                {
                                    throw new NotSupportedException("Malformed tag.");
                                }
                            }
                        }
                        else if ('}' == rtf[i])
                        {
                            // Terminal curly; done
                            break;
                        }
                        else
                        {
                            // Normal character; HTML-escape '<', '>', and '&'
                            switch (rtf[i])
                            {
                                case '<':
                                    sb.Append("&lt;");
                                    break;
                                case '>':
                                    sb.Append("&gt;");
                                    break;
                                case '&':
                                    sb.Append("&amp;");
                                    break;
                                default:
                                    sb.Append(rtf[i]);
                                    break;
                            }
                        }
                        i++;
                    }

                    // Trim any trailing empty lines
                    while ((2 <= sb.Length) && ('\r' == sb[sb.Length - 2]) && ('\n' == sb[sb.Length - 1]))
                    {
                        sb.Length -= 2;
                    }

                    // Finish building HTML text
                    sb.Append("</span></pre>");

                    // Update the clipboard text
                    Clipboard.SetText(sb.ToString());
                }
                else
                {
                    throw new NotSupportedException("Missing text section.");
                }
            }
        }

        // Skip the specified text
        private static void SkipExpectedText(string s, ref int i, string text)
        {
            foreach (char c in text)
            {
                if ((s.Length <= i) || (c != s[i]))
                {
                    throw new NotSupportedException("Expected text missing.");
                }
                i++;
            }
        }

        // Parse a numeric field
        private static int ParseNumericField(string s, ref int i)
        {
            int value = 0;
            while ((i < s.Length) && char.IsDigit(s[i]))
            {
                value *= 10;
                value += s[i] - '0';
                i++;
            }
            return value;
        }
    }
}